Tight Bounds on the Average Sensitivity of k-CNF

نویسنده

  • Kazuyuki Amano
چکیده

The average sensitivity of a Boolean function is the expectation, given a uniformly random input, of the number of input bits which when flipped change the output of the function. Answering a question by O’Donnell, we show that every Boolean function represented by a k-CNF (or a k-DNF) has average sensitivity at most k. This bound is tight since the parity function on k variables has average sensitivity k. ACM Classification: F.1.3 AMS Classification: 68R05, 68Q15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Average Sensitivity and Density of k-CNF Formulas

We study the relationship between the average sensitivity and density of k-CNF formulas via the isoperimetric function φ : [0, 1]→ R, φ(μ) = max { AS(F ) CNF-width(F ) : E[F (x)] = μ } , where the maximum is taken over all Boolean functions F : {0, 1}∗ → {0, 1} over a finite number of variables and AS(F ) is the average sensitivity of F . Building on the work of Boppana [Bop97] and Traxler [Tra...

متن کامل

Constraint Satisfaction Problems Parameterized above or below Tight Bounds: A Survey

We consider constraint satisfaction problems parameterized above or below tight bounds. One example is MaxSat parameterized above m/2: given a CNF formula F with m clauses, decide whether there is a truth assignment that satisfies at least m/2 + k clauses, where k is the parameter. Among other problems we deal with are MaxLin2-AA (given a system of linear equations over F2 in which each equatio...

متن کامل

More inequalities for Laplacian indices by way of majorization

The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...

متن کامل

Exponential Lower Bounds for the PPSZ k-SAT Algorithm

In 1998, Paturi, Pudlák, Saks, and Zane presented PPSZ, an elegant randomized algorithm for k-SAT. Fourteen years on, this algorithm is still the fastest known worst-case algorithm. They proved that its expected running time on k-CNF formulas with n variables is at most 2(1− k, where k ∈ Ω(1/k). So far, no exponential lower bounds at all have been known. In this paper, we construct hard instanc...

متن کامل

On the Readability of Monotone Boolean Formulae

Golumbic et al. [Discrete Applied Mathematics 154(2006) 1465-1477] defined the readability of a monotone Boolean function f to be the minimum integer k such that there exists an ∧ − ∨-formula equivalent to f in which each variable appears at most k times. They asked whether there exists a polynomial-time algorithm, which given a monotone Boolean function f , in CNF or DNF form, checks whether f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theory of Computing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011